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Abstract

The involvement of distributed brain regions in declarative memory has been hypothesized based on studies with verbal memory
tasks. To characterize episodic declarative memory function further, 14 right-handed volunteers performed a visual verbal learning
task using paired word associates. The volunteers underwent positron emission tomography. 15O-butanol was used as a tracer of
regional cerebral blood ¯ow (rCBF). Inter-regional functional interactions were assessed based on within-task, across-subject inter-
regional rCBF correlations. Anatomical connections between brain areas were based on known anatomy. Structural equation
modelling was used to calculate the path coef®cients representing the magnitudes of the functional in¯uences of each area on the
ones to which it is connected by anatomical pathways. The encoding and the retrieval network elicit similarities in a general manner
but also differences. Strong functional linkages involving visual integration areas, parahippocampal regions, left precuneus and
cingulate gyrus were found in both encoding and retrieval; the functional linkages between posterior regions and prefrontal regions
were more closely linked during encoding, whereas functional linkages between the left parahippocampal region and posterior
cingulate as well as extrastriate areas and posterior cingulate gyrus were stronger during retrieval. In conclusion, these ®ndings
support the idea of a global bihemispheric, asymmetric encoding/retrieval network subserving episodic declarative memory. Our
results further underline the role of the precuneus in episodic memory, not only during retrieval but also during encoding.

Introduction

Memory has been the centre of attention for a considerable time, with

good progress being made in understanding its nature. Schacter &

Tulving (1994), for example, argue for a subdivision into declarative

and procedural memory systems with a further division of the former

into semantic and episodic memory. There are still many questions to

answer about the brain networks involved in all of these memory

systems, especially now that it is appreciated that memory function is

distributed throughout the brain and not restricted to any particular

region.

Increasing information has become available from brain imaging

techniques about the networks of brain regions active while human

subjects solve various cognitive tasks; a certain amount of overlap

has been discovered between the networks involved in different tasks.

A number of researchers have examined interactions between

different brain regions using covariances of brain activity across

space. The term `functional connectivity' has been used to describe

correlations of activity between neural elements and brain imaging

(Friston et al., 1993). A more re®ned progression from functional

connectivity is `effective connectivity' which represents the in¯uence

or effect which one neural element has on another (Friston et al.,

1993). It has been noticed, however, that one confound of effective

connectivity is that inter-regional covariances may be in¯uenced by

direct in¯uences, indirect interactions or common in¯uences.

The application of structural equation modelling to brain imaging

data has been proposed in order to differentiate between these

in¯uences (McIntosh & Gonzales-Lima, 1991, 1992; McIntosh et al.,

1994). Structural equation modelling, or path analysis, is a data-

analysis technique allowing one to assess the numerical value or

weight that each path in a given model should have for the model to

account for the observed patterns of covariances. It is important to

recognize that the use of structural equation modelling (McIntosh

et al., 1994) allows functional interactions between brain regions, and

not just the levels of activity, to be ascertained during a task. Turning

to the speci®c features of the present study, we examined a verbal

episodic memory task during encoding or retrieval of visually

presented semantically unrelated paired word associates. We aimed

speci®cally to disentangle encoding and retrieval network representa-

tions in this memory task. Regional cerebral blood ¯ow (rCBF) was

measured using positron emisson tomography (PET) in 14 normal

subjects with O-15-butanol during encoding and retrieval phases.

The subtraction analysis using statistical parametric mapping

(Friston et al., 1995a, b) of the data presented here (Halsband et al.,
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1998) supports the hypothesis of the presence of distributed brain

structures subserving episodic encoding and retrieval of word pair

associates. A left prefrontal activation during the encoding of

visually-presented word pair associates was observed, whereas

retrieval led to bilateral prefrontal activation as well as anterior

cingulate activation. In addition, the results point to the important role

of the precuneus in the retrieval of highly imaginable word-pair

associates using visual imagery as a mnemonic strategy (Halsband

et al., 1998).

The aim of this study has already been speci®ed in general; more

speci®cally the data arising from the rCBF measurements were used

®rstly to obtain within-task across-subject correlations of the

functional interactions between pairs of the involved brain regions,

and secondly to determine the strength of the functional linkage

between these regions by means of structural equation modelling

during episodic encoding and retrieval. Thirdly, we investigated the

resulting structural models to explore the differences in episodic

encoding and retrieval.

Materials and methods

Subjects

Fourteen right-handed male volunteers (mean age 26.6 6 3.4 years)

with no history of neurological or psychiatric illness took part in the

study. The study was approved by the ethical committee and federal

authorities. Informed, written consent for participation in the study

was obtained from each subject.

Positron emission computed tomography scanning

Six scans of regional cerebral blood ¯ow (rCBF) were obtained for

each subject using a GE PC4096 Plus scanner (Rota Kops et al.,

1990) which provides 15 transverse sections through the brain spaced

6.5 mm apart (centre to centre). Transmission scans performed with a
68Ge/68Ga rotating line source were used for measured attenuation

correction. A laser positioning system was used to obtain images

parallel to a line 27 mm above the canthomeatal line. Emission data

were acquired in list mode for 3 min post-injection starting with the

intravenous bolus administration of 1500 MBq 15O-butanol. The list

mode data was framed into a single frame of 40 s starting at the entry

of the tracer into the brain comprising all 15 image planes (Herzog

et al., 1996). Using ®ltered backprojection, the reconstructed image

resolution was » 9 mm (full width half maximum). The activity

images were regarded as estimates of rCBF. Standardization of rCBF

was achieved by dividing each pixel value for a given scan by that

subject's global CBF for that scan.

Paired word association learning

A visual verbal episodic memory task was used. Subjects were

visually presented with word pairs. Study words were two-syllable

German words that were between four and nine letters in length and

of moderate frequency. The word pairs were semantically unrelated

(hard associations) and therefore dif®cult to associate. Wechsler

(1945) made a distinction between easy and hard word associations in

his associative learning task of the Wechsler Memory Scale (Subtest

VII). Word pairs (with the second word under the ®rst to avoid

lateralization effects) were presented on a 17-inch computer monitor

placed at a distance of » 70 cm from the eyes (font, Times New

Roman; size, 72 points). The letters were white on a black screen and

centred.

In a prestudy all subjects underwent testing of memory

performance with the visual verbal memory task. Subjects were

presented with 12 word pairs. Afterwards they were asked to retrieve

the corresponding word pair associates after having been randomly

presented with the ®rst of the two words of each pair. The subject's

individual performance was evaluated by repeating the storage and

retrieval task for the number of times the volunteer needed to

successfully retrieve » 80% of the randomly-presented word pairs.

Using a new set of 12 word pairs, six PET measurements were

performed for each volunteer. On each of the six trials the memory

task began » 30 s before the injection of a bolus of 15O-butanol.

During the ®rst scan (storage), subjects were presented with 12 word

pairs visually and had to read them aloud (presentation rate: 4 s word

pair presentation, 1 s interval). Between scan 1 (®rst storage) and scan

2 (®rst retrieval) the same word-paired associates were presented in

random order one to three times according to the number of encoding

repetitions needed to retrieve an average accuracy of 80% of the word

pair associates as evaluated by prestudy memory performance testing.

During scan 2 the ®rst words of the pair associates were visually

presented (presentation rate: 4 s ®rst word of a word pair, 1 s interval).

The subjects had to read the ®rst word of a word pair aloud and also

to add the corresponding associated word aloud.

Data analysis

Image analysis was performed using modules of the Statistical

Parametric Mapping (SPM) software package (Friston et al., 1995a,

b), programs written in MATLAB (Math works, Natick, MA, USA)

for the correlation analysis (Horwitz et al., 1995) and LISREL

(Version 7.17, Scienti®c Software Inc.) for structural equation

modelling. Image analysis was performed on a SPARC 20 work-

station (Sun Microsystems).

Each reconstructed 15O-butanol scan was realigned and reoriented

along the bi-commissural line into a standard stereotactic space

(Talairach & Tournoux, 1988) using a PET template. In the standard

space, 1 voxel represents 2 3 2 3 4 mm in the x, y and z dimensions,

respectively (Friston et al., 1995a; Friston et al., 1995b). A Gaussian

®lter with a full width half maximum of 15 mm was applied.

Correlation coef®cients were evaluated separately within task

(encoding and retrieval task), across subjects between standardized

rCBF in a reference voxel and standardized rCBF in all other brain

voxels (Horwitz et al., 1995). Because the rCBF data are heavily

smoothed, the value of rCBF in a speci®c region can be represented

by the value in one voxel.

Anatomical model

The anatomical model (regions and their anatomical interconnec-

tions) is presented in Fig. 1 and Table 1. The connections are mainly

based on studies in nonhuman primates. For the frontal lobe

connections we assumed they would correspond to the dorsal±ventral

and anterior±posterior connections assessed in primates. The

anatomical network comprises the visual cortical network, the limbic

network and interhemispheric connections. A similar anatomical

model has been used by McIntosh et al. (1996) employing a working

memory task for faces.

This network of prefrontal, posterior cortical areas and limbic

structures (Warrington & Weiskrantz, 1982; Goldman-Rakic, 1988)

is heavily interconnected (Mesulam, 1990). The anterior cingulate

cortex has substantial connections with the frontal, parietal and

limbic structures and receives major inputs from various parts of the

cerebral cortex (Pandya & Kuypers, 1969; Vogt et al., 1979). The

principal reciprocal connections of the dorsolateral prefrontal cortex

are with the inferior parietal lobule, parahippocampus and cingulate

gyrus (Jacobson & Trojanowski, 1977; Goldman-Rakic et al., 1984;

Goldman-Rakic, 1987; Pandya & Barnes, 1987). An important neural

pathway connecting the prefrontal cortex with the hippocampus is by
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way of a relay in the caudomedial lobule (Goldman-Rakic, 1984,

1988), an area presumed to represent the retrosplenial area of

posterior cingulate cortex. The anatomical connections of the

precuneus are widespread and include the prefrontal cortex

(Petrides & Pandya, 1984; Goldman-Rakic, 1988) and the occipital

cortices (Blum et al., 1950).

The anatomical model consists of three subnetworks, (i) the visual

network, (ii) the corticolimbic network and (iii) the interhemispheric

network. We assumed only homologous left±right and right±left

connections, apart from some heterologous contralateral in¯uences

between the left and the right hemispheres. Indications for

nonhomologous connections were derived from modi®cation indices

(JoÈreskog & SoÈrbom, 1989).

Structural equation modelling

For the structural equation models, voxels that were identi®ed

through inter-regional correlation of rCBF estimates within each

condition (Horwitz et al., 1995) having a key relation to the

experimental condition were selected. We used the stack model or

multiple group approach in LISREL (JoÈreskog & SoÈrbom, 1989;

McIntosh & Gonzales-Lima, 1992; McIntosh et al., 1994) to perform

omnibus comparisons between conditions. We did not calculate a

model for each of the conditions separately, but combined both in a

single analysis (McIntosh et al., 1996; Cabeza et al., 1997). In the

stacked model, functional models are compared as follows: all path

coef®cients are set to be equal between the two conditions (null

hypothesis) and statistically probed with those where the path

coef®cients were allowed to differ (alternative hypothesis). To

compare the two hypotheses, the c2-value for the alternative

hypothesis is subtracted from the c2-value of the null model. This

procedure allows the estimates to differ and thus allows estimation of

the improvement in ®t of the alternative model compared with the

null model. A signi®cant improvement in ®t indicates a signi®cant

difference of functional interactions between conditions. Path

coef®cient values were normalized.

We calculated the functional model as follows: (i) the path

coef®cients for the feed-forward connections were tested within each

hemisphere starting from the input node in visual striate cortex

through the fusiform gyrus to the parahippocampal and to frontal

regions; (ii) we ®xed the estimates from analysis (i), and the path

coef®cients through the feed-back connections from frontal and

limbic areas were compared between conditions within hemispheres;

and (iii) the results from analysis (ii) were ®xed and the interhemi-

spheric connections were tested. In order to rule out the possibility

that the solutions were in¯uenced by the order of the analysis we

reversed steps (i) and (ii).

Results

The main ®nding of this path analysis is a functional distinction of a

network of brain regions subserving encoding and retrieval in

episodic associative memory.

Network components

Locations of representative voxels used in the network analysis are

depicted in Table 1 (coordinates are given in the coordinate system of

Talairach & Tournoux, 1988). Correlation coef®cients between brain

regions in the encoding and retrieval tasks are displayed in Table 2

(P < 0.05).

FIG. 1. Anatomical model for the network analysis. The connections are
mainly based on studies in nonhuman primates (abbreviations in the ®gures
are de®ned in Table 1 and in the Abbreviations list below).

TABLE 1. Location of representative voxels used in the network analysis

Structure Abbreviation x y z

Precuneus, left lPRC ±8 ±66 44
Precuneus, right rPRC 8 ±66 44
Frontopolar cortex, left lFPO ±20 46 24
Frontopolar cortex, right rFPO 22 62 20
Dorsolat. prefr. cortex, left lDLPF ±44 22 4
Dorsolat. prefr. cortex, right rDLPF 56 26 12
Posterior cingulate cortex, left lPOC ±6 ±58 28
Posterior cingulate cortex, right rPOC 10 ±56 20
Anterior cingulate cortex, left lAC ±6 ±8 44
Anterior cingulate cortex, right rAC 6 ±8 44
Striate cortex, left lSC ±10 ±82 0
Striate cortex, right rSC 10 ±82 0
Extrastriate cortex, left lESC ±20 ±62 ±12
Extrastriate cortex, right rESC 20 ±64 ±8
Parahippocampal gyrus, left lPG ±22 ±46 ±8
Parahippocampal gyrus, right rPG 24 ±46 ±8

The coordinates x, y and z (mm) are those of Talairach & Tournoux (1988).
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During both encoding and retrieval, there were strong positive

rCBF correlations between right and left striate cortex, as well as

between right and left extrastriate cortex. Furthermore there were

large positive rCBF correlations between right extrastriate cortex and

right parahippocampal cortex as well as between left extrastriate

cortex and left parahippocampal cortex. Strong positive correlations

occurred to a greater extent during encoding vs. retrieval [i.e.

r(diff) > 0.5 between r(encoding) and r(retrieval)] between the anterior

cingulate cortex and the left precuneus as well as left dorsolateral

prefrontal cortex. Large positive correlations were also observed

between the right anterior cingulate cortex and the right dorsolateral

prefrontal as well as right frontopolar cortex. Furthermore there were

high correlations between the left precuneus and the anterior

cingulate cortex. During retrival only [i.e. r(diff) > 0.5 between

r(retrieval) and r(encoding)], large positive correlations were observed

between the left parahippocampal gyrus and the posterior cingulate

gyrus, where there was no correlation during encoding. There also

exist positive correlations between the left precuneus and the left

posterior cingulate cortex.

Structural equation modelling

There were signi®cant task-related differences between the two

networks as suggested by omnibus statistical comparisons. Statistical

comparisons showed signi®cant differences in functional linkages

between the encoding vs. the retrieval network [c2
diff(18) = 171;

P < 0.001]. This improvement in ®t indicates a signi®cant difference

of functional interactions between the encoding and retrieval

conditions. Figure 2 shows the structural models obtained for

encoding (see Table 3a for path coef®cients) and Fig. 3 shows the

retrieval of word pair associates (see Table 3b for path coef®cients).

Encoding network

Figure 2 presents the functional model for encoding. There are strong

interactions between the primary visual cortex, extrastriate areas and

the parahippocampal gyrus, all in the right hemisphere. A functional

linkage also exists between primary visual cortex, extrastriate areas

and the precuneus and the parahippocampal gyrus in the left

hemisphere. Left and right parahippocampal gyrus are linked to the

anterior cingulate gyrus. There is a functional interaction between

extrastriate areas on the right and its companion in the left

hemisphere. Right extrastriate areas are functionally linked to the

right dorsolateral prefrontal area. The left dorsolateral prefrontal area

is strongly linked with left extrastriate areas and vice versa. The left

precuneus is strongly linked to left posterior and anterior cingulate,

which itself interacts with the left dorsolateral prefrontal area. The

right precuneus is strongly linked to the right anterior cingulate gyrus,

which itself strongly interacts with the right dorsolateral prefrontal

area and the frontopolar cortex. Corticolimbic interactions for the

right hemisphere were dominated by the anterior cingulate to the

dorsolateral prefrontal cortex and the frontopolar cortex and the

functional interaction of extrastriate areas with the parahippocampal

gyrus. Corticolimbic interactions for the left hemisphere were

dominated by the paths from precuneus to anterior cingulate and

dorsolateral prefrontal to extrastriate areas, and paths from precuneus

to posterior cingulate. Interhemispheric interactions exist between

right extrastriate cortex and its left sibling, of right anterior cingulate

likewise, and of reciprocal in¯uences between both parahippocampi

and both posterior cingulates.

Retrieval network

Figure 3 presents the functional model for retrieval. As for encoding,

right primary visual cortex is functionally linked to the right

extrastriate areas and thence to the right parahippocampal area; there

is also an interaction of extrastriate areas on the right to its left

hemisphere companion. However, there is now a bi-directional

interaction of left and right primary visual cortex. Left primary visual

cortex is also linked to left extrastriate areas, which itself is strongly

linked to the left parahippocampal region. Instead of the interactions

in the right hemisphere from primary visual cortex to the precuneus

and thence to anterior cingulate and right frontopolar cortex and

dorsolateral prefrontal cortex during encoding, for retrieval there are

interactions between the extrastriate cortex and the posterior

cingulate gyrus. There are important interactions between mainly

left hemisphere parahippocampal, posterior cingulate and precuneus

regions during retrieval as compared to encoding. Under retrieval

conditions the right hemisphere strong and medium pathways are

mainly feed-forward. There are also feed-back interactions from

frontopolar cortex to precuneus (in both hemispheres) and from right

dorsolateral prefrontal cortex to extrastriate areas on the right. There

is a strong interaction between left dorsolateral prefrontal cortex and

left frontopolar cortex (as for the right hemisphere) and at a medium

level on the left from parahippocampal to extrastriate areas.

TABLE 2. Pearson correlation coef®cients between brain regions showing differential activity in encoding and retrieval (P < 0.05)

lPRC rPRC lFPO rFPO lDLPF rDLPF lPOC rPOC lAC rAC lSC rSC lESC rESC lPG rPG

lPRC ± 0.54 0.58
rPRC 0.59 ± 0.57
lFPO 0.60 ± 0.80
rFPO 0.68 0.59 ± 0.66
lDLPF 0.53 0.60 ± 0.59 ±0.56
rDLPF 0.55 0.74 ±
lPOC ± 0.61 0.63 0.58
rPOC 0.82 ± 0.56
lAC 0.61 0.63 0.65 0.65 ±
rAC 0.61 0.56 0.80 0.77 0.59 0.84 ±
lSC ± 0.79 0.69 0.58
rSC 0.78 0.64 0.54 ± 0.65 0.66
lESC 0.79 0.67 ± 0.74 0.78 0.69
rESC 0.58 0.55 0.54 0.78 0.71 ± 0.77 0.64
lPG 0.71 0.72 ± 0.58
rPG 0.56 0.62 0.55 0.55 0.71 0.63 0.90 ±

The upper right diagonal matrix (numbers in italics) is based on data from the retrieval condition and the lower left diagonal matrix on data from the
encoding condition. The bold, underlined coef®cients are of equivalent magnitude for encoding and retrieval (abbreviations are de®ned in Table 1 and in the
Abbreviations list below).
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Discussion

Structural equation modelling of episodic encoding and retrieval

revealed both similarities and differences in the interactions between

brain regions.

There is a certain amount of overlap of the encoding network with

that for retrieval in a general manner but also signi®cant differences

between the two networks. If looked at in terms of the strongest

connecting paths between modules, say at or above a strength of 0.5,

the common paths between the two conditions are from primary

visual cortex to extrastriate areas and thence to the parahippocampal

region on the right, from extrastriate areas to the parahippocampal

region on the left, and from precuneus to posterior cingulate on the

left. Figure 4 displays differences between the models where only

those paths are displayed that differ by more than 0.4 between

episodic encoding and retrieval. As a main ®nding our results show

®rstly that during encoding mostly anterior neocortical regions

including the anterior cingulate cortex and prefrontal cortex strongly

functionally interact where there is less interaction during retrieval.

Secondly, during retrieval more posterior regions comprising

parahippocampal cortex, posterior cingulate gyrus and extrastriate

cortex are strongly interacting, where those interactions are less

strong in episodic encoding.

Prefrontal cortex

Neuropsychological studies suggest that the prefrontal cortex is

involved in strategic processing (Moscovitch, 1992; Moscovitch

et al., 1995), temporal ordering (Petrides, 1989) and the organiza-

tion of search (Shallice, 1988). In humans, frontal lobe lesions,

though not generally recognized as causing de®cits on recognition

FIG. 2. Functional model for encoding. The magnitude of the functional
in¯uence is proportional to the width of the arrows. Positive path coef®cients
are shown as solid arrows whereas negative path coef®cients are shown as
segmented arrows (Path coef®cients between ±0.1 and +0.1 are not shown.)

FIG. 3. Functional model for retrieval.
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and recall tasks (Ghent et al., 1962; Stuss et al., 1982; Smith &

Milner, 1984; Squire, 1987), are reported to impair the free recall

of word lists.

Left frontal lobe activation relates to word meaning retrieval

(Buckner, 1996), external order monitoring (Petrides, 1996), short-

and long-term recognition of words (Andreasen et al., 1995), visual

working memory (Salmon et al., 1996) and effortful retrieval,

maintainance and/or long-term control of semantic information

(Fiez, 1997), strategic control of semantic retrieval (Randolph et al.,

1996), active encoding and retrieval of information held in posterior

cortical association areas (Petrides et al., 1995), encoding of object

features (Owen et al., 1996) and word and picture associative and

visual semantic tasks (Vandenberghe et al., 1996). Right frontal lobe

involvement has been shown in episodic memory retrieval for words

and faces (Buckner, 1996) and working memory updating of syllables

(Salmon et al., 1996).

Our results are indicative of strong feed-forward and feed-back

interactions between the left dorsolateral prefrontal cortex and

extrastriate cortex during encoding, which do not occur for retrieval.

In a path analysis of a face-matching paradigm over various delay

times, McIntosh et al. (1996) also found a strong functional

interaction between the dorsolateral prefrontal cortex and extrastriate

visual cortex. During retrieval only, we show that the left dorsolateral

prefrontal cortex interacts strongly with the left frontopolar cortex. In

a path analysis by Cabeza et al. (1997) on a paired word association

task in young and old subjects there were positive interactions

between right inferior frontal cortex and frontopolar cortex during

encoding which is in line with our ®ndings. In young normal

volunteers there was a dissociation between the functional interac-

tions of left and right inferior frontal cortex between episodic

encoding and retrieval (Cabeza et al., 1997). Our path analysis reveals

an asymmetry of interhemispheric interactions between the prefrontal

areas, but there is clearly bilateral prefrontal involvement in encoding

and retrieval with an asymmetry in the strength of functional

interactions between conditions.

Cingulate cortex

Clinical evidence supports the importance of the cingulate cortex

in memory function (Valenstein et al., 1987; Rudge & Warrington,

1991). It has been suggested that the caudomedial lobule forms an

important link in the hippocampal connections to the neocortex

that is highly developed in primates (Goldman-Rakic, 1988). The

cingulate cortex shows an important role in the maintenance of

goal-directed behaviours, i.e. in auditory-verbal graded response

memory tasks (Grasby et al., 1993), in verbal memory tasks

(Petrides et al., 1993; Fink et al., 1996; Halsband et al., 1998), in

decision-making responses (Corbetta et al., 1991) and in veri®ca-

tion of temporal order (Nyberg et al., 1996). Shallice et al. (1994)

TABLE 3. Path coef®cients: each coef®cient corresponds to the path going from the region in the column heading to the region in the row heading. The bold,
underlined coef®cients differ by > 0.4 between the models.
TABLE 3A Encoding path coef®cients

lPRC rPRC lFPO rFPO lDLPF rDLPF lPOC rPOC lAC rAC lSC rSC lESC rESC lPG rPG

lPRC ± 0.21 0.13 0.25 0.22 0.45 ±0.28 0.26
rPRC 0.14 ± 0.18 0.16 ±0.10 0.13 0.40 0.17
lFPO 0.49 ±0.16 ± 0.28 ±0.52 ±0.53
rFPO 0.23 0.15 ± 0.18 0.50
lDLPF 0.25 ± 0.28 0.40 0.39 0.29
rDLPF ±0.12 0.11 ± 0.52 0.44 ±0.24
lPOC 0.53 ±0.21 ± 0.40 ±0.23
rPOC 0.22 0.47 ±
lAC 0.52 ± 0.39 0.11
rAC 0.35 0.14 0.24 ± 0.42
lSC ± 0.14 ±0.10
rSC ±0.19 ± 0.25
lESC ±0.23 0.55 0.20 ± 0.46 ±0.16
rESC 0.16 ±0.23 0.76 ±0.20 ± ±0.15
lPG ±0.10 ±0.11 0.73 ± 0.10
rPG ±0.29 0.18 ±0.19 0.84 0.35 ±

TABLE 3B. Retrieval path coef®cients

lPRC rPRC lFPO rFPO lDLPF rDLPF lPOC rPOC lAC rAC lSC rSC lESC rESC lPG rPG

lPRC ± 0.17 0.18 0.27 0.29 0.18 ±0.23 0.13 ±0.25
rPRC ± 0.15 0.21 0.19 0.10 0.35 ±0.17
lFPO 0.69 ±0.17 ± 0.42 0.50 ±0.67 0.24
rFPO ±0.17 0.24 0.16 ± 0.54
lDLPF ±0.12 ± 0.12 ±0.15 ±0.41 0.48 0.35
rDLPF 0.21 0.27 ± 0.23 ±0.39 0.16
lPOC 0.51 ±0.26 ± ±0.13 0.30 0.42
rPOC 0.13 0.25 ± 0.39
lAC 0.28 ±0.30 ± 0.40 ±0.15
rAC 0.45 ±0.14 0.24 ± 0.10
lSC ±0.15 0.17 ± 0.53 0.18
rSC ±0.12 ±
lESC ±0.75 0.43 ± 0.40 0.49
rESC 0.16 0.27 0.64 ±
lPG 0.25 ±0.37 0.12 0.40 ±0.11 0.68 ±
rPG 0.20 0.20 0.68 0.22 ±

Abbreviations are de®ned in Table 1 and in the Abbreviations list below.
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found a double dissociation between anterior cingulate cortex and

prefrontal cortex: the former was preferentially activated in

response selection and maintenance of goal-directed behaviours,

whereas the latter was involved in the organization of supervisory

thought processes.

As a main ®nding our results show that during encoding the left

and right anterior cingulate strongly interact with the left and right

dorsolateral prefrontal cortex, and the right anterior cingulate

interacts with the frontopolar cortex where there is no interaction

during retrieval. McIntosh et al. (1996) found a strong functional

interaction between the cingulate cortex and frontal areas.

Furthermore, our results indicate that during retrieval the posterior

cingulate cortex is more strongly functionally linked to extrastriate

cortex and parahippocampal gyrus.

Parahippocampal gyrus

The parahippocampal gyrus plays an important role in active

mnemonic processing (Petrides, 1996), in encoding of novel pictures

(Stern et al., 1996), word and picture associative and visual semantic

tasks (Vandenberghe et al., 1996), episodic compared to semantic

retrieval of episodic memory (Fink et al., 1996) and encoding of

novel pictures (Stern et al., 1996).

Our results point to an involvement of the parahippocampal gyrus

which is strongly interconnected with the posterior cingulate cortex

during retrieval, whereas there is less interaction apparent during

encoding. In both encoding and retrieval, the left and right

parahippocampal gyri interact with the corresponding extrastriate

cortex. This is in line with ®ndings of McIntosh et al. (1996) who

found that throughout all the delays in the face-matching case the

parahippocampal gyrus was functionally linked to extrastriate visual

cortex. Rajah et al. (1997) also showed similarities to our model

interactions. Their structural model for encoding showed strong

interactions among hippocampus, extrastriate cortex and cingulate

cortex. KoÈhler et al. (1998) assessed right hemispheric mesial

temporal lobe interactions with the posterior neocortex by means of

path analysis for spatial and object retrieval. During object retrieval

there were interactions between right extrastriate cortex and

parahippocampal gyrus. The authors provide evidence that mesial

temporal lobe interactions depend on the domain of information to be

recovered and show positive interactions involving ventral posterior

regions for object retrieval which is in line with our ®ndings with

involvement of ventral posterior regions for verbal memory items

employing a high degree of imagery.

Precuneus

The precuneus clearly plays a pivotal role in our paired word

association task. There exist extensive connections between the

precuneus, prefrontal and cingulate regions (Mesulam, 1990).

Anatomical evidence indicates prefrontal (Petrides & Pandya, 1984;

Goldman-Rakic, 1988), temporal, occipital and thalamic connections

(Blum et al., 1950; Pribram & Barry, 1956). Involvement of the

precuneus has been shown in episodic as compared to semantic

memory retrieval (Tulving et al., 1994; Grady et al., 1995; Schacter

et al., 1995; N. Kapur et al., 1995; S. Kapur et al., 1995; Fletcher

et al., 1995b, 1996; Moscovitch et al., 1995; Fink et al., 1996;

Halsband et al., 1998; Mottaghy et al., 1999). It was shown in a recent

study by our group that the precuneus is not only signi®cantly

activated during the recall of highly imaginable words but also during

the recall of abstract words, and plays a major role in a network of

distributed brain regions in episodic retrieval irrespective of the

presentation modality (visual±verbal/auditory±verbal) (Krause et al.,

1999). The results of the path analysis underline the role of the

precuneus in episodic retrieval. Our ®ndings additionally demonstrate

its involvement during encoding as evident from its strong functional

interactions (i.e. connections with primary visual cortex, extrastriate

areas, parahippocampus, anterior and posterior cingulate and

prefrontal cortex).

Conclusion

Our ®ndings provide evidence for a global bihemispheric, asym-

metric encoding/retrieval network subserving episodic declarative

memory. For the interhemispheric interactions the functional models

reveal an encoding/retrieval asymmetry. During encoding the left

hemispheric functional in¯uences were greater in number and

strength of path coef®cients than the right hemispheric ones.

FIG. 4. Main differences in the functional models for encoding and retrieval.
Only paths that differ by more than 0.4 between the models are displayed.
Dotted line, encoding; solid line, retrieval.
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During retrieval, the right hemispheric functional in¯uences domi-

nated as compared to the left hemispheric ones. Our ®ndings provide

evidence that distinct prefrontal areas (dorsolateral prefrontal and

frontopolar cortex) are differentially involved in episodic memory

and support the hypothesis of functionally specialized regions in

prefrontal cortex. Our results underline the role of the precuneus in

episodic retrieval, but additionally demonstrate its involvement

during encoding as evident from its strong functional interactions.

Abbreviations

lAC, anterior cingulate cortex, left; lDLPF, dorsolateral prefrontal cortex, left;
lESC, extrastriate cortex, left; lFPO, frontopolar cortex, left; lPG, para-
hippocampal gyrus, left; lPOC, posterior cingulate cortex, left; lPRC,
precuneus, left; lSC, striate cortex, left; PET, positron emission tomography;
rAC, anterior cingulate cortex, right; rCBF, regional cerebral blood ¯ow;
rDLPF, dorsolateral prefrontal cortex, right; rESC, extrastriate cortex, right;
rFPO, frontopolar cortex, right; rPG, parahippocampal gyrus, right; rPOC,
posterior cingulate cortex, right; rPRC, precuneus, right; rSC, striate cortex,
right; SPM, statistical parametric mapping.
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